Email Us | Ph +612 6772 6770 |

 |  |

| |

Enabling better global research outcomes in soil, plant & environmental monitoring.

Sap Flow Tool

Sap Flow Tool is able to import and visualise data from various sensors and measurement devices, not just sap flow meters.

Sap Flow Tool can perform sap flow calculations on data from sensors based on two measurement principles:

HRM (Heat Ratio Method) sensors
HFD (Heat Field Deformation) sensors

Main Features

1.  Visually manipulate your data (remove bad data, smooth, calculate daily averages, etc)
2.  2D and 3D visualisation of sap velocities, sap flux densities and sap flow rates
3.  Interactive radial sap flux density and sap velocity profile
4.  Analyse and visualise data from multiple sensors and/or multiple files
5.  Import and visualise non-ICT International sensor data
6.  Windows and Mac version

Manage multiple files and/or sensors simultaneously

Multiple data files containing multiple sensors can be loaded and managed simultaneously.

Sap Flow Tool also supports importing non-sap flow data, including non-ICT International sensor data. However, sap flow calculations are limited to ICT International sap flow sensor data.

Use the quick view graph to quickly inspect any imported data column.

Automatic calculation of HFD K-values

In order to calculate sap flow rates from HFD sensor data, K-values need to be obtained for each thermistor position.

Sap Flow Tool calculates K-values using an intelligent adaptive regression algorithm that will automatically determine the optimal portion of the data needed for the regression.

Visualize sap velocities and sap flux densities in 2D and 3D

Sap velocities (HRM)(cm/h) and sap flux densities (HFD)(cm3/cm2/h) are calculated for each thermistor position in the sensor.

Visualisation is done in 2D (as a function of time) and in 3D (as a function of time and depth).

All graphs are interactive and can be zoomed, scaled and rotated. A top-view surface plot is also available.

Interactive radial sap velocity (HRM) and sap flux density (HFD) profile

2D sap velocities (HRM) or sap flux densities (HFD) are displayed as a function of time and depth. The latter is called the sap velocity (HRM) or sap flux density (HFD) radial profile.

The radial profile at each time instance can be visualised by moving the red marker line across the upper graph. This causes the corresponding radial profile to be shown in the lower graph. Sap wood depth and xylem radius are indicated by red lines on the radial profile graph.

Create custom graphs with sap flow and non-sap flow data

Data from the same sensor but different files can be combined and merged into a single graph curve.

Changes to sensor or wood settings will automatically update the graph data.

Data on the graphs can be manipulated with several data filters. The following filters are available: remove data, interpolate, linear transform (add or multiply data), integrate (calculate surfaces underneath curves), cumulate, sum (e.g. calculate daily sums), average (e.g. calculate daily averages), moving average (smooth data).

All graph data can be exported as text files in order to recreate the graphs in another software package.

Ambrose, A. R., Sillett, S. C., Koch, G. W., Van Pelt, R., Antoine, M. E., & Dawson, T. E. (2010). Effects of height on treetop transpiration and stomatal conductance in coast redwood (Sequoia sempervirens). Tree physiology, tpq064. 30: 1260-1272.

Bleby, T. M., Burgess, S. S., & Adams, M. A. (2004). A validation, comparison and error analysis of two heat-pulse methods for measuring sap flow in Eucalyptus marginata saplings. Functional Plant Biology, 31(6), 645-658.

Buckley, T. N., Turnbull, T. L., Pfautsch, S., & Adams, M. A. (2011). Nocturnal water loss in mature subalpine Eucalyptus delegatensis tall open forests and adjacent E. pauciflora woodlands. Ecology and evolution, 1(3), 435-450.

Buckley, T. N., Turnbull, T. L., & Adams, M. A. (2012). Simple models for stomatal conductance derived from a process model: cross‐validation against sap flux data. Plant, cell & environment, 35(9), 1647-1662.

Buckley, T. N., Turnbull, T. L., Pfautsch, S., Gharun, M., & Adams, M. A. (2012). Differences in water use between mature and post-fire regrowth stands of subalpine Eucalyptus delegatensis R. Baker. Forest Ecology and Management, 270, 1-10.

Burgess, S. S., Adams, M. A., Turner, N. C., Beverly, C. R., Ong, C. K., Khan, A. A., & Bleby, T. M. (2001). An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiology, 21(9), 589-598.

Burgess, S. S. O., M. A. Adams, N. C. Turner, C. K. Ong, A. A. H. Khan, C. R. Beverly and T. M. Bleby (2001) Corrections: An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiology, 21(16), 1157. doi:10.1093/treephys/21.16.1157

Carbone, M. S., Park Williams, A., Ambrose, A. R., Boot, C. M., Bradley, E. S., Dawson, T. E., … & Still, C. J. (2013). Cloud shading and fog drip influence the metabolism of a coastal pine ecosystem. Global Change Biology, 19(2), 484-497.

Doronila, A. I., & Forster, M. A. (2015). Performance measurement via sap flow monitoring of three Eucalyptus species for mine site and dryland salinity phytoremediation. International journal of phytoremediation, 17(2), 101-108.

Drake, P. L., Coleman, B. F., & Vogwill, R. (2013). The response of semi‐arid ephemeral wetland plants to flooding: linking water use to hydrological processes. Ecohydrology, 6(5), 852-862.

Eller, C. B., Lima, A. L., & Oliveira, R. S. (2013). Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae). New Phytologist, 199(1), 151-162.

Forster, M. A. (2012). Quantifying water use in a plant–fungal interaction. Fungal Ecology, 5(6), 702-709.

Gharun, M., Turnbull, T. L., & Adams, M. A. (2013). Stand water use status in relation to fire in a mixed species eucalypt forest. Forest Ecology and Management, 304, 162-170.

Mitchell, P. J., Veneklaas, E., Lambers, H., & Burgess, S. S. (2009). Partitioning of evapotranspiration in a semi-arid eucalypt woodland in south-western Australia. Agricultural and Forest Meteorology, 149(1), 25-37.

Palmer, A. R., Fuentes, S., Taylor, D., Macinnis‐Ng, C., Zeppel, M., Yunusa, I., & Eamus, D. (2010). Towards a spatial understanding of water use of several land‐cover classes: an examination of relationships amongst pre‐dawn leaf water potential, vegetation water use, aridity and MODIS LAI. Ecohydrology, 3(1), 1-10.

Pfautsch, S., Keitel, C., Turnbull, T. L., Braimbridge, M. J., Wright, T. E., Simpson, R. R., … & Adams, M. A. (2011). Diurnal patterns of water use in Eucalyptus victrix indicate pronounced desiccation–rehydration cycles despite unlimited water supply. Tree physiology, 31, 1041-1051. doi:10.1093/treephys/tpr082

Pfautsch, S., Peri, P. L., Macfarlane, C., van Ogtrop, F., & Adams, M. A. (2014). Relating water use to morphology and environment of Nothofagus from the world’s most southern forests. Trees, 28(1), 125-136.

Resco de Dios, V., Díaz‐Sierra, R., Goulden, M. L., Barton, C. V., Boer, M. M., Gessler, A., … & Tissue, D. T. (2013). Woody clockworks: circadian regulation of night‐time water use in Eucalyptus globulus. New Phytologist, 200(3), 743-752.

Rosado, B. H., Oliveira, R. S., Joly, C. A., Aidar, M. P., & Burgess, S. S. (2012). Diversity in nighttime transpiration behavior of woody species of the Atlantic Rain Forest, Brazil. Agricultural and forest meteorology, 158, 13-20.

Staudt, K., Serafimovich, A., Siebicke, L., Pyles, R. D., & Falge, E. (2011). Vertical structure of evapotranspiration at a forest site (a case study). Agricultural and forest meteorology, 151(6), 709-729.

Zeppel, M. J., Lewis, J. D., Medlyn, B., Barton, C. V., Duursma, R. A., Eamus, D., … & Tissue, D. T. (2011). Interactive effects of elevated CO2 and drought on nocturnal water fluxes in Eucalyptus saligna. Tree physiology, 31(9), 932-944.